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Inequivalence of dynamical ensembles in a generalized driven diffusive lattice gas
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We generalize the driven diffusive lattice gas model by using a combination of Kawasaki and Glauber
dynamics. We find via Monte Carlo simulations and perturbation studies that the simplest possible generali-
zation of the equivalence of the canonical and grand-canonical ensembles, which holds in equilibrium, does not
apply for this class of nonequilibrium systems.

PACS number~s!: 05.40.2a, 05.70.Ln
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For statistical systems in thermodynamic equilibrium, t
equivalence of different ensembles in the thermodyna
limit is a well-established result@1#. Does this have an ana
log in driven systems that display nonequilibrium stea
states and transitions between them? Perhaps not, in gen
but it is important to investigate when, if at all, such
analog might exist. One aspect of this problem has b
studied in Ref.@2# in the context of a Gallavotti-Cohen-typ
symmetry in the large-deviation functional for driven st
chastic systems such as a driven diffusive lattice
~DDLG!. We have studied another aspect of this problem
the context of ageneralizedDDLG, which is one of the
simplest driven models in statistical mechanics with a tr
sition between different nonequilibrium steady states.
begin by recalling that the conventional DDLG~see below
and Ref.@3#! uses number-conserving~Kawasaki! dynamics
@4# to update particle positions; i.e., it is the analog of t
canonical ensemble in equilibrium. To develop a gran
canonical analog we generalize the DDLG to include
chemical potentialm and am-dependent fraction of update
that use nonconserving~Glauber! dynamics@4#; the remain-
ing fraction of updates use Kawasaki dynamics. We sh
the following: ~1! our generalized DDLG is ideally suited t
examining the simplest nonequilibrium analog of the equi
lence of canonical and grand-canonical ensembles;~2! even
in this simple driven system, the canonical and gra
canonical ensembles arenot equivalent. We arrive at this
result by using Monte Carlo simulations to study our DDL
and perturbation theory to investigate a continuum version
it. We end with some remarks about the relevance of
work to studies of phase coexistence in sheared mesog
fluids @5#.

It is useful to begin with a recapitulation of some eleme
tary facts: The DDLG is based on a latttice-gas model
which the occupation variablesni assume the values 1 or
depending on whether a particle is present or not at the si.
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Such a model is simply related to an Ising model@6# defined
in terms of the spin variablesSi[(2ni21) by the Hamil-
tonian

H52J(̂
i j &

SiSj2H(
i

Si , ~1!

where the exchange couplingJ and the magnetic fieldH are
related, respectively, to the pair potentialV and the chemical
potentialm of the lattice gas, and̂i j & are nearest-neighbo
pairs of sites on ad-dimensional hypercubic lattice~we use a
two-dimensional square lattice in our numerical studies!. If
J.0, model~1! is ferromagnetic and its lattice-gas analo
has an attractive interparticle interaction. The equilibriu
phase diagram of model~1! is well known: In the tempera-
ture T and H plane there is a first-order phase boundary
H50 along the line 0<T,Tc(d), which ends in a critical
point at T5Tc(d); this first-order boundary shows up as
region of two-phase coexistence in aT-M phase diagram,
where the magnetizationM is the Ising analog of the lattice
gas densityr; constant-M and constant-H ensembles are the
analogs of the canonical and grand-canonical ensembles~we
will use Ising-model and lattice-gas terminology inte
changeably in this paper!. As noted before, these ensembl
are equivalent@7# and one can use standard thermodynam
relations to go from one to the other. In particular, to obta
the coexistence curve in theT-M phase diagram from the
first-order boundary in theT-H phase diagram, we merel
have to find the jump in the magnetization across this ph
boundary at all values ofT,Tc(d).

In the conventional DDLG,H50 in model~1!, the mag-
netizationM is fixed, since Kawasaki spin exchange is us
in Monte Carlo updates, and a nonequilibrium steady stat
maintained as follows: An ‘‘electric field’’E is applied; this
forces all particles~assumed identically charged! to move
along its directionl; periodic boundary conditions are used
this direction. In Monte Carlo simulations, one uses the M
tropolis algorithm @8# with a transition probability
Min@1,e2b(DH1 l•E)#, whereDH is the change in energy be
cause of the Kawasaki spin exchange andb[(kBT)21, with
kB the Boltzmann constant. Note that the fieldE favors par-
ticles moving along its direction, disfavors the opposite, a
does not affect jumps in transverse directions. Extens
studies@3# have shown that this DDLG exhibits two-phas

e,

-
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FIG. 1. ~a! The variation of the magnetization
M with the temperatureT for our generalized
DDLG with L532, E5`, and the magnetic field
H560.05 ~squares!, H560.02 ~triangles!, and
H560.01 ~circles!. ~b! First-order phase-
coexistence curves for the conventional DDL
~small diamonds! @9#, for our generalized DDLG
~circles for L516 and triangles forL532), and
for the two-dimensional Ising model in equilib
rium ~solid line!. Note thatr5(11M )/2.
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coexistence forT,Tc
K(d,E), whereE[uEu and the super-

script K stands for Kawasaki to help us to distinguish th
critical temperature from the one we obtain below for o
generalized DDLG. For the infinitely biased case,E5`,
e.g., Tc

K(d52,E5`).1.35Tc
K(d52,E50), where Tc

K(d
52,E50) is just the Onsager critical temperature for t
two-dimensional Ising model in equilibrium. Critical expo
nents have been obtained forE.0 @3# and one study@9# has
investigated the coexistence curve in theT-M plane.

We have generalized the DDLG by introducing Glaub
spin-flip moves @10# in addition to the Kawasaki spin
exchange moves mentioned above. We choose the ratiof G of
the number of these Glauber moves to the total numbe
moves to be proportional toH2. Thus, asH→0, f G→0, in
the simplest analytic way that is even inH. By virtue of these
Glauber moves our generalized DDLG does not conserve
number of particles and thus provides a suitable extensio
the grand-canonical ensemble for this nonequilibrium s
tem. We might think naively that, asH→0, we regain the
conventional DDLG with only Kawasaki updates. Howev
we must exercise caution here for there is some subtlet
the order in which limits are taken: sincef G;H2→0 asH
→0, we must run a Monte Carlo simulation for a timetSSat
least;H22 so that the system experiences a large eno
number of Glauber moves and attains its true steady s
i.e., we must take thetSS→` limit before we takeH→0
@just as in equilibrium studies we take the thermodynam
limit ~system sizeL→`) before we take theH→0 limit
while calculating the magnetization#.

In our Monte Carlo simulations we use a square lattice
sideL. In most of our studiesE5` and is applied along the
1x direction. Thus jumps along this direction are alwa
accepted, those in the2x direction are forbidden, and jump
along the6y directions are not affected byE. We choose at
random the spin that has to be updated, measure time in
of Monte Carlo steps per spin~MCS!, and use random initia
conditions. At each set of values ofH andT we wait for the
system to reach a statistical steady state, characterized
steady mean value of the magnetization per site@M (H,T)
[(1/L2)( iSi #, and then obtain data for average values of
quantities we measure. We obtain the coexistence curv
our dynamical grand-canonical ensemble by determin
M (H,T) both asH↑0 and H↓0, for T,Tc

GK , where the
superscriptGK indicates that this is the critical temperatu
for our generalized DDLG, which uses Glauberand Ka-
wasaki spin updates. Curves ofM versusT are shown for
different values ofH in Fig. 1. We use such curves to obta
theH↑0 andH↓0 limits of M (T,H) and thence the coexist
r
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ence curve of Fig. 1~b! ~we show only the left half of this
curve since it is symmetrical aboutM50 or r51/2).

Our coexistence curves forL516 andL532 @Fig. 1~b!#
are within error bars of each other, so finite-size correctio
to our results are not significant except very near the crit
point at r51/2, T5Tc

GK.1.1. For comparison we hav
shown the coexistence curve obtained in Ref.@9# for the
conventional DDLG, in which only Kawasaki updates a
used; we also show the Onsager result for the tw
dimensional Ising model in equilibrium. Figure 1~b! illus-
trates two important features:~1! Tc

GK,Tc
K and the coexist-

ence curve for our generalized DDLG is distinctly differe
from that for the conventional DDLG@9#; the former bows
out to higher temperatures nearTc

GK , but then crosses the
latter and subsequently lies below it.~2! The coexistence
curve for our generalized DDLG is quite close to Onsage
result for the two-dimensional Ising model in equilibriu
@3#. We give a perturbative justification below. Howeve
before we do this, it is useful to try to understand the
results qualitatively. In our generalized DDLG, we approa
the coexistence curve by taking the limitsH↑0 or H↓0.
Thus, if T,Tc

GK , most spins assume the value sgn(H), and
there are no macroscopically large interfaces as in the c
ventional DDLG. Consequently, the electric fieldE, which is
the source of the nonequilibrium behavior here, has a sma
effect in our generalized DDLG than it does in the conve
tional DDLG. This might well be the reason for the proxim
ity of our coexistence curve to that of the two-dimension
Ising model in equilibrium.

To obtain a more detailed understanding of our Mon
Carlo results, we have developed a Langevin or tim
dependent Ginzburg-Landau~TDGL! model for our general-
ized DDLG. This is a simple extension of the Langev
model for the conventional DDLG@3#; since our purpose is
merely to illustrate the phase-coexistence issues mentio
above, we restrict ourselves to a model in which all anisot
pies, other than the driving electric field, are dropped. T
Langevin equation for our model is

]c

]t
52G0H2S lc2H1

u

3!
c32c¹2c D1E]xc

2

1S l¹2c1
u

3!
¹2c31c¹4c D1h11h2 , ~2!

where l;(T2Tc
GK) is negative in the ordered phase, a

c[f1M0, with M0 the mean-field magnetization given b
lM01(u/3!)M0

35H. As in our lattice-gas model, the ki
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FIG. 2. Diagrams that contribute to the ma
netization M5^c& to O(u,E2) for model ~2!.
Lines represent response functions and lines w
a filled circle correlation functions. Vertice
marked with au have a factor ofuH2/2 associ-
ated with them; those with anE have a factoriE.
th
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netic coefficients in this Langevin equation are such that
order parameterc is conserved ifH50, and terms that lead
to a violation of this conservation are proportional toH2.
The two noise termsh1 and h2 have zero mean an
^h1(k,t)h1(k8,t8)&52G0H2kBTd(k1k8)d(t2t8) and
^h2(k,t)h2(k8,t8)&52k2kBTd(k1k8)d(t2t8), where k
andk8 are wavevectors,k[uku and t and t8 are times. The
variances of the noise terms are chosen such that, in
long-time limit, the Boltzmann distribution obtains ifE50.
Since the currentjE produced byE must vanish if no holes o
no particles are present locally, we make the simplest ch
that satisfies these constraints, namely,jE5(12c2)E, which
leads@3# to the termE]xc

2 in our Langevin equation with
the spatial derivative alongE ~chosen to be parallel to thex
axis!.
re

w

ft.
i

e
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ce

We now calculateM[^c& perturbatively toO(u,E2) in
the limits t→` andH→0. The diagrams in Fig. 2 contribut
to this order. Thus, toO(u,E2)

M5M01uM0kBTa11uE2M0~kBT!2a2

1uE2M0~kBT!2a3 , ~3!

where

a152
1

2lE d2q

22l1cq2 ,
a252
1

lE d2qd2q1

22lq21cq4

q1
2

22lq1
21cq1

422l~q2q1!21c~q2q1!4

qx
2

22l1cq1
2

1

22l1c~q2q1!2 ,

~4!

a352
1

2lE d2qd2q1qx~q1x2qx!

22lq21cq4

1

22l1cq1
2

1

22l1cq2

1

22lq21cq422lq1
21cq1

422l~q2q1!21c~q2q1!4
se
trips
trips

-
pendicular toE. As in Ref. @3# the equation of state is
come from the loop integrals in Fig. 2; in order to compa
with our lattice simulations we set the spatial dimensiond
52.

The Langevin equation for the conserved case follo
from Eq.~2! with H50. We setc5f1M , where, at the end
of the calculation, we will find thatM5M0, to the lowest
order inu. Hence

]f

]t
5l¹2f1

u

3!
¹2f31

u

2
M2¹2f1

u

2
M¹2f22c¹4f

1EM]xf
21h2 . ~5!

The term 2EM]xf has been eliminated by a Galilean shi
We calculate correlation functions by using the dynam
generating functional@11#
s

c

Jc@f,f8#52E dtd2xf̂¹2f̂1 i E dtd2xS F ]

]t
2l¹2f

2
u

3!
¹2f32

u

2
M2¹2f2

u

2
M¹2f22c¹4f

2E]f2G f̂1f̂¹2f D , ~6!

wheref̂ is the Martin-Siggia-Rose conjugate variable@12#.
Order-parameter conservation implies thatf(x,t) cannot re-
spond to a spatially uniform magnetic field. In the two-pha
regime phase separation proceeds via the formation of s
of up and down spins with the interfaces between these s
aligned, on average, parallel toE @3#. Thus the coupling to
the field has the form*dtd2xf̂¹2h(x') in the dynamical
functional where the subscript' denotes the direction per
FIG. 3. Diagrams contributing up toO(u) andO(uE2) to G11.
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h5
]

]k'
2

d

df̂
G@c,f̂#uk50 ,f̂50,c5M

5
]

]k'
2

d

df̂
G@f,f̂#uk50 ,f̂50,f50, ~7!

where G is the vertex generating functional. A function
Taylor expansion ofG aboutc(q)5Md(q) yields

G@f,f̂#5 (
n150,n250

`
1

n1!

1

n2!

3E d2q1 . . . d2qn1
d2q̃1 . . . d2q̃n2

3@f~q1!1Md~q1!#@f~q2!

1Md~q2!# . . . f~qn1
!f̂~ q̃1! . . . f̂~ q̃n2

!

3Gn1n2~q1 , . . . ,qn1
,q̃1 , . . . ,q̃n2

!. ~8!

If we are only interested in the spontaneous magnetiza
we set
e

a
fin
ia

o
y
u

ur
l
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n

h505
]

]k'
2

d

df̂~k!
G@f,f̂#uf5M ,f̂50 . ~9!

By retaining terms up toO(M3) we get

]

]k'
2 FMG111

M2

2
G211

M3

3!
G31G50, ~10!

which, when expanded toO(u,E2), yields

M5A23!l

4
@11ukBTb11uE2b2~kBT!2b3

1uE2~kBT!2b31uE2~kBT!2~D11D21D3!#

5M0@11ukBTb11uE2b2~kBT!2b1uE2~kBT!2b3

1uE2~kBT!2~D11D21D3!#, ~11!

where, as for the case of our generalized DDLG, the me
field magnetizationM05A23!l/4, andb1 ,b2 ,b3 andD are
the loop integrals in Fig. 3, To this order we can setM
5M0 in the loop integrals. Hence we obtainb15a1 , b2
5a2 , b35a3 and
D152
1

lE d2qd2q1

22lq21cq422l~q1q1!21c~q1q1!422lq1
21cq1

4

1

22lq1
21cq1

4

1

22l1cq2

q1x~qx1q1x!

22l1cq1
2

,

D25
1

2lE d2qd2q1

22lq21cq422l~q1q1!21c~q1q1!422lq1
21cq1

4

1

22lq1
21cq1

4

1

22l1cq2

q1x
2

22l1c~q1q1!2
, ~12!

D35
1

2lE d2qd2q1

22lq21cq422l~q1q1!21c~q1q1!422lq1
21cq1

4

1

22lq1
21cq1

4

1

22l1cq2

q1x~qx1q1x!

22l1cq1
2

.

x-
d to
Fig.
en
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en-
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s
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Notice that sum of the diagrams contributing toG31 and
G21 to O(uE2) vanish~Fig. 4!. This is a consequence of th
invariance of our TDGL equations underr→r2Et with f
→f21/(2M).

We now compare our TDGL results for the magnetiz
tions of the generalized DDLG and conserved cases. We
that there is an extra contribution from the last three d
grams D1 ,D2 ,D3 in the latter; this is positive definite s
uMKu.uMGKu. Of course ifE50 both are the same as the
must be by virtue of the equivalence of ensembles in eq
librium. Our analytical results agree qualitatively with o
Monte Carlo results for 0.2&r&0.4 where the conventiona
DDLG coexistence curve lies above the one for our gene
ized DDLG ~i.e., at a fixed value ofT,rK.rGK or, equiva-
lently, uMKu.uMGKu); further away from this regime we

FIG. 4. Diagrams contributing up toO(u) to G31 andG21.
-
d
-

i-

l-

must include higher-order terms in our functional Taylor e
pansion. In particular, we believe such terms are require
understand the crossing of the two coexistence curves in
1 for r&0.2. Note also that quantitative agreement betwe
our analytical and numerical results is not expected at c
cality since our one-loop approximation can only yie
mean-field exponents.

In conclusion, then, we have shown that the simplest g
eralizations of grand-canonical and canonical ensembles
not equivalent for our generalized DDLG. Our study, thou
carried out on a very simple model, has important lessons
work on phase coexistence in systems such as sheared
atogenic fluids @5#. Such studies have also found th
constant-shear-rate and constant-stress ensembles yield
ferent phase-coexistence boundaries. However, while de
mining such boundaries, the ‘‘chemical potentials’’~defined
as in equilibrium, i.e., as the derivative of a ‘‘free energy
with respect to particle density! in the two coexisting phase
are equated. The lesson from our work is that this is va
only in the limit of very low shear rate~or E in our example!;
really we must equate]G]f in the two coexisting phases
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this will yield the equality of the chemical potentials in equ
librium but will have corrections at finiteE @of O(uE2) to
lowest order#.

Note added in proof.The critical behavior of a DDLG
with mixed kinetics~but different from our model in detail!
has been studied numerically by J.-S. Wang, K. Binder,
J. L. Lebowitz, J. Stat. Phys.56, 783~1989! and analytically
d

b

d

by K. E. Bassler and B. Schmittmann, Phys. Rev. Lett.73,
3343 ~1994!. We thank B. Schmittmann for bringing this t
our notice.

We thank A. Sain for discussions, SERC~IISc! and JN-
CASR ~India! for computational resources, and CSIR~India!
for financial support.
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