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Inequivalence of dynamical ensembles in a generalized driven diffusive lattice gas
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We generalize the driven diffusive lattice gas model by using a combination of Kawasaki and Glauber
dynamics. We find via Monte Carlo simulations and perturbation studies that the simplest possible generali-
zation of the equivalence of the canonical and grand-canonical ensembles, which holds in equilibrium, does not
apply for this class of nonequilibrium systems.
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For statistical systems in thermodynamic equilibrium, theSuch a model is simply related to an Ising mojdgldefined
equivalence of different ensembles in the thermodynamién terms of the spin variableS;=(2n;—1) by the Hamil-
limit is a well-established resultl]. Does this have an ana- tonian
log in driven systems that display nonequilibrium steady
states and transitions between them? Perhaps not, in general, - o :
but it is important to investigate when, if at all, such an " J(i2j> 55 HZ S @
analog might exist. One aspect of this problem has been
studied in Ref[2] in the context of a Gallavotti-Cohen-type Where the exchange couplidgand the magnetic fieltl are
symmetry in the large-deviation functional for driven sto- related, respectively, to the pair potentiaand the chemical
chastic systems such as a driven diffusive lattice gaotentialu of the lattice gas, andij) are nearest-neighbor
(DDLG). We have studied another aspect of this problem irpairs of sites on @-dimensional hypercubic lattidgve use a
the context of ageneralizedDDLG, which is one of the two-dimensional square lattice in our numerical studiéfs
simplest driven models in statistical mechanics with a tranJ>0, model(1) is ferromagnetic and its lattice-gas analog
sition between different nonequilibrium steady states. Wéias an attractive interparticle interaction. The equilibrium
begin by recalling that the conventional DDLGee below phase diagram of modé€l) is well known: In the tempera-
and Ref[3]) uses number-conservirigtawasakj dynamics ture T andH plane there is a first-order phase boundary at
[4] to update particle positions; i.e., it is the analog of theH =0 along the line 8sT<T(d), which ends in a critical
canonical ensemble in equilibrium. To develop a grand{oint atT=T.(d); this first-order boundary shows up as a
canonical analog we generalize the DDLG to include aregion of two-phase coexistence inTaM phase diagram,
chemical potentiaj. and aux-dependent fraction of updates where the magnetizatio is the Ising analog of the lattice-
that use nonconservinglaubey dynamics[4]; the remain-  gas density; constantM and constanH ensembles are the
ing fraction of updates use Kawasaki dynamics. We showanalogs of the canonical and grand-canonical enseniivkes
the following: (1) our generalized DDLG is ideally suited to Will use Ising-model and lattice-gas terminology inter-
examining the simplest nonequilibrium analog of the equiva-changeably in this paperAs noted before, these ensembles
lence of canonical and grand-canonical ensemii®seven  are equivalenf7] and one can use standard thermodynamic
in this simple driven system, the canonical and grand+elations to go from one to the other. In particular, to obtain
canonical ensembles aret equivalent We arrive at this the coexistence curve in thBM phase diagram from the
result by using Monte Carlo simulations to study our DDLG first-order boundary in thd-H phase diagram, we merely
and perturbation theory to investigate a continuum version ohave to find the jump in the magnetization across this phase
it. We end with some remarks about the relevance of ouboundary at all values of <T.(d).
work to studies of phase coexistence in sheared mesogenic In the conventional DDLGH=0 in model(1), the mag-
fluids [5]. netizationM is fixed, since Kawasaki spin exchange is used

It is useful to begin with a recapitulation of some elemen-in Monte Carlo updates, and a nonequilibrium steady state is
tary facts: The DDLG is based on a latttice-gas model inmaintained as follows: An “electric field'E is applied; this
which the occupation variabley assume the values 1 or 0 forces all particlesiassumed identically chargetbo move
depending on whether a particle is present or not at the.site along its directiori; periodic boundary conditions are used in

this direction. In Monte Carlo simulations, one uses the Me-
tropolis algorithm [8] with a transition probability
*Present address: Theoretische Physik UnivérBitasburg, Min[1,e AAH+1-E)] ‘whereAH is the change in energy be-
D-47048 Duisburg, Germany. cause of the Kawasaki spin exchange @(kgT) 2, with
TAlso at Poorna Prajna Institute of Scientific Research, Bangaloresg the Boltzmann constant. Note that the fi@davors par-
India. ticles moving along its direction, disfavors the opposite, and
*Also at Jawaharlal Nehru Institute for Advanced Scientific Re-does not affect jumps in transverse directions. Extensive
search, Bangalore, India. studies[3] have shown that this DDLG exhibits two-phase
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1._." 1.5
”:-. x FIG. 1. (a) The variation of the magnetization
05| * AA.I. ' YN M with the temperaturel for our generalized
* s, "ug 1t :/‘,‘L DDLG with L=32, E=, and the magnetic field
AT TTYY , H==+0.05 (squares H=*0.02 (triangles, and
M o “.::gx T H=+0.01 (circles. (b) First-order phase-
o at g 05k coexistence curves for the conventional DDLG
05 e 4 .-' { (small diamonds[9], for our generalized DDLG
A:.' (circles forL=16 and triangles fot. =32), and
_1.!.l!' ‘ . ‘ o . ‘ ‘ ‘ for the two-dimensional Ising model in equilib-
0.8 1 2 14 16 18 0 01 02 03 04 05 rium (solid line). Note thatp=(1+ M)/2.
(a) T (b) P

coexistence foﬂ'<TCK(d,E), whereE=|E| and the super- €nce curve of Fig. () (we show only the left half of this

script K stands for Kawasaki to help us to distinguish this CUrve since it is symmetrical aboM =0 or p=1/2).

critical temperature from the one we obtain below for our ©OUr coexistence curves far=16 andL =32 [Fig. 1(b)]
generalized DDLG. For the infinitely biased cade=x, &€ within error bars of each other, so finite-size corrections

e.g., T(d=2E=x)=1.35T%(d=2E=0), where T¥(d to our results are not significant except very near the critical
.g., c s . c y y c . _ _ 17GK__ .

—2E=0) is just the Onsager critical temperature for theP0INt at p=1/2, T=Tg"~1.1. For comparison we have

two-dimensional Ising model in equilibrium. Critical expo- Shown the coexistence curve obtained in R&f for the

nents have been obtained 6r0 [3] and one study9] has conventional DDLG, in which only Kawasaki updates are
investigated the coexistence curve in i plane. used; we also show the Onsager result for the two-

We have generalized the DDLG by introducing Glauberdimensional Ising model in equiggriung. Figurel) illus-
spin-flip moves[10] in addition to the Kawasaki spin- (rates two important featuregl) T;"<T¢ and the coexist-
exchange moves mentioned above. We choose thefiap ~ €NCe curve for our generalized DDLG is distinctly different
the number of these Glauber moves to the total number dfom that for the conventional DDLES]; the former bows
moves to be proportional t8l2. Thus, asH—0, fg—0, in  Out to higher temperatures neﬁif , but then crosses the
the simplest analytic way that is eventih By virtue of these  latter and subsequently lies below (@) The coexistence
Glauber moves our generalized DDLG does not conserve thiglrve for our generalized DDLG is quite close to Onsager's
number of particles and thus provides a suitable extension dgsult for the two-dimensional Ising model in equilibrium
the grand-canonical ensemble for this nonequilibrium sysL3]. We give a perturbative justification below. However,
tem. We might think naively that, ad—0, we regain the before we do this, it is useful to try to understand these
conventional DDLG with only Kawasaki updates. However, "esults qualitatively. In our generalized DDLG, we approach
we must exercise caution here for there is some subtlety if€ co_emstergie curve by taking the limits[O or H|O.
the order in which limits are taken: sinédg~H?—0 asH  Thus, if T<TZ", most spins assume the value sgi(and
—0, we must run a Monte Carlo simulation for a timgsat ~ there are no macroscopically large interfaces as in the con-
least~H 2 so that the system experiences a large enougmentional DDLG. Conseqy_en_tly, the ele.ctric fiefdwhich is
number of Glauber moves and attains its true steady statéhe source of the nonequilibrium behavior here, has a smaller
i.e., we must take thess—o limit beforewe takeH—0 effect in our generalized DDLG than it does in the conven-

[just as in equilibrium studies we take the thermodynamidional DDLG. This might well be the reason for the proxim-
limit (system sizel —%) before we take théd—0 limit ity of our coexistence curve to that of the two-dimensional
while calculating the magnetizatign Ising model in equilibrium.

In our Monte Carlo simulations we use a square lattice of T0 obtain a more detailed understanding of our Monte
sideL. In most of our studie€=c and is applied along the Carlo results, we have developed a Langevin or time-
+x direction. Thus jumps along this direction are alwaysdependent Ginzburg-Land4iDGL) model for our general-
accepted, those in thex direction are forbidden, and jumps izéd DDLG. This is a simple extension of the Langevin
along the+y directions are not affected Hy. We choose at Model for the conventional DDLE3]; since our purpose is
random the spin that has to be updated, measure time in unifaerely to |Ilustr_ate the phase-coemstenpe issues me_nt|oned
of Monte Carlo steps per spiiMCS), and use random initial above, we restrict ourselves to a model in which all anisotro-
conditions. At each set of values Bfand T we wait for the ~ Pi€s, other than the driving electric field, are dropped. The
system to reach a statistical steady state, characterized by-&Ngevin equation for our model is
steady mean value of the magnetization per pNgH,T)

= 2ys i J u
=(1/L°)Z;S], and then obtain data for average values of the 4 FOHZ( N—H+ §¢3—CV2¢ +Ed?

guantities we measure. We obtain the coexistence curve in at

our dynamical grand-canonical ensemble by determining

M(H,T) both asH10 andH |0, for T<TSX, where the +()\sz//+ £V2¢3+cv4z//
superscriptGK indicates that this is the critical temperature 3!

for our generalized DDLG, which uses Glaub&nd Ka-

wasaki spin updates. Curves bf versusT are shown for wherex~(T—TSK) is negative in the ordered phase, and
different values oH in Fig. 1. We use such curves to obtain ¢= ¢+ Mg, with M the mean-field magnetization given by
theH10 andH | 0 limits of M(T,H) and thence the coexist- )\M0+(u/3!)M8=H. As in our lattice-gas model, the ki-

+ 71+ 712, (2
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E FIG. 2. Diagrams that contribute to the mag-
netization M =(y) to O(u,E?) for model (2).
u Lines represent response functions and lines with
u u a filled circle correlation functions. Vertices
marked with au have a factor ouH?/2 associ-
E ated with them; those with aB have a factorE.

netic coefficients in this Langevin equation are such that the We now calculateM =(¢) perturbatively toO(u,E?) in
order parametey is conserved iH=0, and terms that lead the limitst—o~ andH— 0. The diagrams in Fig. 2 contribute
to a violation of this conservation are proportional 3.  to this order. Thus, t®(u,E?)

The two noise termsy; and 7z, have zero mean and

(mi(k,t) po(K',t"))y=2T gH?kg TS(k+ k") S(t—t") and

{ma(K,t) mo(K" 1)) =2k?kg TS(k+ k') 5(t—t"), where k M=Mgy+uMokgTa; +UE2My(kgT)?a,

andk’ are wavevectork=|k| andt andt’ are times. The

2 2
variances of the noise terms are chosen such that, in the +HUE"Mo(ksT)"as, )
long-time limit, the Boltzmann distribution obtainsE=0.
Since the currerji produced byE must vanish if no holes or
no particles are present locally, we make the simplest choic¥here
that satisfies these constraints, namplys (1— ¢?)E, which
leads[3] to the termEd,? in our Langevin equation with 5
the spatial derivative along (chosen to be parallel to the A= — i j dq
axis). 172N —2n+ce?
|
. EJ d*qc’a, a3 oy 1
27 M —2ng*+ceq’ —2hgi+cai-2M(g—ay)?+c(q—ay)* —2h+cd —2h+c(d—ap)*
(4)
N ij d®qdauax(qux—tx) 1 1 1
N —26g?+cqt  —2\+cd; —2h+cg” —2ng?+cq’~2Ngi+cai— 20 (q—qy)°+c(q—dy)*
|
come from the loop integrals in Fig. 2; in order to compare PO VIK )
with our lattice simulations we set the spatial dimensibn ~ Jo[ ¢,¢']= —f dtd“x¢V ¢+|f dtd X( A

=2.

The Langevin equation for the conserved case follows
from Eq.(2) with H=0. We set)= ¢+ M, where, at the end
of the calculation, we will find thaM =M, to the lowest

u u u
— §V2¢3— §M2V2¢—§MV2¢2—CV4¢

order inu. Hence —Eg¢? $b+ EbV2¢ , (6)
203 u u u where ¢ is the Martin-Siggia-Rose conjugate variapl®].
i >\V2¢>+§V2¢3+ oM 2V2p+ >M VZp*—cVi¢ Order-parameter conservation implies thg#,t) cannot re-
spond to a spatially uniform magnetic field. In the two-phase
+EMdydp>+ 75. (5) regime phase separation proceeds via the formation of strips

of up and down spins with the interfaces between these strips
aligned, on average, parallel #[3]. Thus the coupling to
The term EMd,¢ has been eliminated by a Galilean shift. the field has the formfdtd?x¢V2h(x,) in the dynamical
We calculate correlation functions by using the dynamicfunctional where the subscrigt denotes the direction per-
generating functiondl11] pendicular toE. As in Ref.[3] the equation of state is

— O O O OO

FIG. 3. Diagrams contributing up t©(u) andO(uE?) to T'*%,
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=0=——T[¢,$]ls-m.5-0- 9
akf 53(K) [&, D] p=m,5=0
By retaining terms up t@®(M?3) we get
M?2 M3
. 11, ¥ p21y U 31
6kf MT**+ 5 I+ 31 r 0, (10

which, when expanded t©(u,E?), yields

-3 ) 5
T[1+ukBTb1+uE bo(kgT)“bs

+UE?(kgT)?bg+ UEA(KgT)?(A;+ A+ Ag)]
=M[ 1+ ukgThy+UuE?b,(kgT)?b+uE?(kgT)%bs
+UE2(kgT)2(A1+A,+A5)], (12

M

where, as for the case of our generalized DDLG, the mean-
field magnetizatio = —3!\/4, andb,,b,,b; andA are
the loop integrals in Fig. 3, To this order we can $ét

If we are only interested in the spontaneous magnetizatios=M, in the loop integrals. Hence we obtaim=a;, b,

we set =a,, by=az and

1 d’qd’q, 1 1 dud et au
Al___ _ 2 4_ 2 4_ 2 4 2 T oN+co? 2

N 2 g tcq'—2N(g+0gy)°+c(gtqy)*—2Nqi;+cqg; —2Ng7tCcqp Co° —2\+cq]

1 d’qd’q, 1 1 Oix
A=on | TonaPredis z o2t o NPT od Nt odR 5 (12

2 g°+cqg 2N (g+qgy)“+c(g+qy) —2Ngi+cg; —2Ngi+cap Cq” —2x+c(g+qy)

1 f d’qd’q, 1 1 dud et an

Ag=5+ _ 2 4_ 2 a_ 2 4 2 4 _ 2 >

2\ ) —2ng°+cqi-2N(g+qy) +ce(q+ay) - 2hgi+cd; —2hgitcd; —2M+Cq° —2)+cqd

Notice that sum of the diagrams contributing[td* and
I'?! to O(uE?) vanish(Fig. 4). This is a consequence of the
invariance of our TDGL equations under-r—Et with ¢
— ¢—1/(2M).

We now compare our TDGL results for the magnetiza-

must include higher-order terms in our functional Taylor ex-

pansion. In particular, we believe such terms are required to
understand the crossing of the two coexistence curves in Fig.
1 for p=0.2. Note also that quantitative agreement between
our analytical and numerical results is not expected at criti-

tions of the_generalized DDL_G a_nd conserved cases. We findamy since our one-loop approximation can only yield
that there is an extra contribution from the last three diamean-field exponents.

gramsA,A,5,A; in the latter; this is positive definite so

IMi|>[Mgy|. Of course ifE=0 both are the same as they

In conclusion, then, we have shown that the simplest gen-
eralizations of grand-canonical and canonical ensembles are

must be by virtue of the equivalence of ensembles in equipg; equivalent for our generalized DDLG. Our study, though

librium. Our analytical results agree qualitatively with our
Monte Carlo results for 022 p=<0.4 where the conventional
DDLG coexistence curve lies above the one for our genera
ized DDLG (i.e., at a fixed value of,px>pgk Or, equiva-
lently, [IMk|>|Mgkl|); further away from this regime we

<

FIG. 4. Diagrams contributing up t©(u) to I'3t andI"%%,

carried out on a very simple model, has important lessons for
work on phase coexistence in systems such as sheared nem-
atogenic fluids[5]. Such studies have also found that
constant-shear-rate and constant-stress ensembles vyield dif-
ferent phase-coexistence boundaries. However, while deter-
mining such boundaries, the “chemical potentialglefined

as in equilibrium, i.e., as the derivative of a “free energy”
with respect to particle densijtyn the two coexisting phases
are equated. The lesson from our work is that this is valid
only in the limit of very low shear ratéor E in our examplg

really we must equatél’d¢ in the two coexisting phases;
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this will yield the equality of the chemical potentials in equi- by K. E. Bassler and B. Schmittmann, Phys. Rev. L&g.
librium but will have corrections at finit& [of O(UE?) to  3343(1994. We thank B. Schmittmann for bringing this to

lowest ordel. our notice.
Note added in proofThe critical behavior of a DDLG _ _ )
with mixed kinetics(but different from our model in detail We thank A. Sain for discussions, SERISc) and JN-

has been studied numerically by J.-S. Wang, K. Binder, an€ASR (India) for computational resources, and CSIRdia)
J. L. Lebowitz, J. Stat. Phy&6, 783(1989 and analytically ~ for financial support.
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